1 (a) Write $7 + 12x - 3x^2$ in the form $a + b(x + c)^2$ where a, b and c are integers.

$$7 + 12x - 3x^{2}$$

$$= -3(x^{2} - 4x) + 7 (1)$$

$$= -3(x - 2)^{2} - 4 + 7 (1)$$

$$= -3(x - 2)^{2} + 12 + 7 (1)$$

$$= -3(x - 2)^{2} + 19$$

Arrange in the form of a + b (x+c)2

$$= 19 - 3(x - 2)^{2}$$
 where $a = 19$ $b = -3$ $c = -2$

The curve **C** has equation $y = 7 + 12x - 3x^2$ The point *A* is the turning point on **C**.

(b) Using your answer to part (a), write down the coordinates of A.

$$y = 19 - 3(x - 2)^{2}$$

$$y = (x - 2)^{2}$$

$$y = (x - 2)^{2}$$

$$(x - 2) = 0 \implies x = 2$$

$$(x - 2) = 0 \implies x = 2$$

$$(x - 2) = 0 \implies x = 2$$

(Total for Question 1 is 5 marks)

- 2 The function f is such that $f(x) = 5 + 6x x^2$ for $x \le 3$
 - (a) Express $5 + 6x x^2$ in the form $p (x q)^2$ where p and q are constants.

(b) Using your answer to part (a), find the range of values of x for which $f^{-1}(x)$ is positive.

$$f(x) = |\psi - (x-3)^{2}$$
Range of $f^{-1}(x)$

$$y \le 3$$

Let $f(x) = y$: $y = |\psi - (x-3)^{2}$

Find x in terms of y

$$y = |\psi - (x-3)^{2}$$

$$(x-3)^{2} = |\psi - (x-3$$

(Total for Question 2 is 7 marks)

3 (b) Express $x^2 - 10x + 40$ in the form $(x + a)^2 + b$, where a and b are integers.

By using completing the square method:

$$(x-5)^{2}-25+40$$
 (1)
= $(x-5)^{2}+15$ (1)
where $a=-5$
 $b=15$

(2)

4 A particle *P* is moving along a straight line.

The fixed point *O* lies on the line.

At time t seconds ($t \ge 0$), the displacement of P from O is s metres where

$$s = t^3 - 9t^2 + 33t - 6$$

Find the minimum speed of P.

Speed,
$$V = \frac{ds}{dt} = 3t^2 - 18t + 33$$

$$V = 3 \left(t^2 - 6t + 11\right)$$

By completing the square:
$$V = 3 \left[(t-3)^2 - 9 + 11 \right] \left(1\right)$$

$$= 3 \left[(t-3)^2 + 2 \right] \left(1\right)$$

$$V = 3 \left(t-3\right)^2 + 6 \left(1\right)$$

V is at minimum when first term = 0 (cannot be negative because of square) when $t = 3$, $V = 3 \left(3 - 3\right)^2 + 6$

= 0 +6

" minimum speed of P is 6 ms.

6

5 (a) Express $2x^2 - 12x + 3$ in the form $a(x + b)^2 + c$ where a, b and c are integers.

$$2(x^{2}-62)+3 \bigcirc$$

$$2[(x-3)^{2}-q]+3 \bigcirc$$

$$2(x-3)^{2}-18+3$$

$$2(x-3)^{2}-15 \bigcirc$$

where a = 2, b = -3 and c = -15

6 Express each of a, b and c in terms of q so that

$$q + 12x - qx^2$$

can be written as $a - b(x - c)^2$

$$-q(x^{2} - \frac{12}{q}x) + q \qquad (1)$$

$$-q[(x - \frac{12}{2q})^{2}...] + q \qquad (1)$$

$$-q(x - \frac{6}{q})^{2} + \frac{36}{q} + q \qquad (1)$$

$$a = \frac{36}{9} + 9$$

$$c = \frac{\hat{6}}{q}$$

$$a = \frac{36}{9} + 9$$

$$b = \frac{9}{6}$$

$$c = \frac{6}{9}$$

(Total for Question 6 is 4 marks)

Given that a, b and c are integers,

7 (b) express $3x^2 + 12x + 19$ in the form $a(x + b)^2 + c$

$$3(x^{2}+4x)+19$$

$$3(x+2)^{2}-4]+19$$

$$3(x+2)^{2}-12+19$$

$$3(x+2)^{2}+7$$

$$9=3, b=2, c=7$$

(2)

(Total for Question 7 is 2 marks)

8 (a) Express $7 + 12x - 3x^2$ in the form $a + b(x + c)^2$ where a, b and c are integers.

$$7-3(x^2-4x)$$
 (1)
 $7-3[(x-2)^2-4]$ (1)
 $7-3(x-2)^2+12$
 $19-3(x-2)^2$ (1)

C is the curve with equation $y = 7 + 12x - 3x^2$ The point *A* is the maximum point on **C**

(b) Use your answer to part (a) to write down the coordinates of A

(Total for Question 8 is 4 marks)

The function g is such that

$$g(x) = 5x^2 - 20x + 23$$

9 (c) Express g(x) in the form $a(x-b)^2 + c$

$$g(x) = 5(x^{2} + 4x) + 23(1)$$

$$= 5[(x-2)^{2} - 4] + 23(1)$$

$$= 5(x-2)^{2} - 20 + 23$$

$$= 5(x-2)^{2} + 3(1)$$

10 Express $3x^2 - 6x + 5$ in the form $a(x - b)^2 + c$

$$3(x^{2}-2x)+5 \qquad \boxed{1}$$

$$3(x-1)^{2}-1 \qquad \boxed{+5}$$

$$3(x-1)^{2}-3 \qquad +5 \qquad \boxed{1}$$

$$3(x-1)^{2}+2 \qquad \boxed{1}$$

(Total for Question 10 is 3 marks)